Abstract Submitted for the TSS15 Meeting of The American Physical Society

F Center Formation in Sapphire Under Low Dose Low Energy Ar Irradiation EMMANUEL NJUMBE, DHARSHANA WIJESUNDERA, BUDDHI TILAKARATNE, WEI-KAN CHU, TcSUH Ion Beam Lab, University of Houston — Optical spectroscopy and Rutherford Backscattering Spectrometry Channeling (RBS-C) have been used to study F center dynamics in 170 keV Ar⁺ irradiated single crystals of sapphire (α -Al₂O₃) at room temperature for implantation doses between 10^{13} Ar⁺ cm⁻² to 5×10^{14} Ar⁺ cm⁻². F center density (N_F) has been found to display an initial rapid linear increase with Ar⁺ dose and then saturate to a maximum value of 4.02×10^{14} cm⁻³. Fitting experimental results with a Poisson relation suggest an estimated electron capture range of 4.24×10^{-10} m around an Oxygen vacancy. A possible explanation to this behaviour is presented.

Emmanuel Njumbe Univ of Houston

Date submitted: 12 Feb 2015 Electronic form version 1.4