Abstract Submitted for the TSS17 Meeting of The American Physical Society

Plausible Answers to Questions Regarding Abiogenesis on Prebiotic Earth¹ GRANT COOPER, Texas Tech University — Evidence indicates Earth's surface acquired necessary life-giving volatile elements - carbon, nitrogen, sulfur - from a collision with a Mercury-like planetary embryo $^{-}4.4$ billion y ago. Icy comets containing hydrocarbons collided with a cooling prebiotic Earth to create impact reactive environments that - via classical anthropic causality - introduced primordial "ribozyme-like" RNA complexes which could duplicate a few molecular units per 24 hrs. Random classical processes introduced energetically accessible duplex RNA segments containing keto - amino (-NH₂) hydrogen bonds, where hydrogen bonded amino protons were subjected to quantum uncertainty limits, $\Delta x \Delta p_x$ \geq $\hbar/2$. This introduced a probability of EPR arrangement, keto $amino (entanglement) \rightarrow enol-imine$, where reduced energy product protons are each shared between two indistinguishable sets of *intramolecular* electron lone-pairs belonging to enol oxygen and imine nitrogen on opposite genome strands. Product protons participate in entangled quantum oscillations at $^{410^{13}}$ s⁻¹ (4800 m s⁻¹) between near symmetric energy wells in decoherence-free subspaces until measured, in a genome groove, $\delta t \ll 10^{-13}$ s, by an evolutionary selected Grover's quantum bio-processor. This quantum entanglement resource for reactive evolution provides a sequence of ~12 incremental entanglement-enabled improvements to genome fitness, of the form: RNA-ribozyme \rightarrow RNA-protein \rightarrow DNA-protein.

¹Texas Tech University Research Funds

Grant Cooper Texas Tech University

Date submitted: 28 Feb 2017

Electronic form version 1.4