Abstract Submitted for the TSS17 Meeting of The American Physical Society

Ring-Puckering Potential Energy Functions and Structures for Trimethylene Sulfide and Its Monovalent Cation¹ HYE JIN CHUN, ESTHER J. OCOLA, JAAN LAANE, Department of Chemistry, Texas AM University, College Station, TX 77843-3255, USA — The vibrational spectra of trimethylene sulfide (TMS) and the vacuum ultraviolet mass-analyzed threshold ionization spectra of the trimethylene sulfide cation (TMS⁺) have been reported. Theoretical computations have been carried out to calculate the structures of both TMS and TMS⁺ using ab initio (MP2/cc-pVTZ) and DFT (B3LYP/cc-pVTZ) methods. These calculations were used to predict the coordinate dependent kinetic energy functions for the ring-puckering of both molecules. The kinetic energy functions were then used to calculate the refined ring-puckering potential energy functions for both species based on the previously published spectra. The refined ring-puckering potential energy functions fit the experimental data very well. TMS has an energy barrier of 271 $\rm cm^{-1}$ and energy minima at ring-puckering angles of 29 degree. TMS⁺ has a barrier of 60 $\rm cm^{-1}$ and the energy minima at ring-puckering angles of 21 degree. The lower barrier for TMS⁺ shows that the cation has lower ring angle strain than TMS itself.

¹The authors wish to thank the Robert A. Welch Foundation (Grant A-0396) for financial support.

Hye Jin Chun Department of Chemistry, Texas A M University, College Station, TX 77843-3255, USA

Date submitted: 17 Feb 2017

Electronic form version 1.4