Modeling Sensitivity to Initial Conditions of Rotational Dynamics JOSEPH GUTHEINZ, MADELINE CARTER, JAMES CLARAGE, University of St. Thomas — Classical Dynamics, although simplistic in its elegance, has posed countless questions, many of which have yet to be answered. One such problem pertaining to this sub-field of Physics begs the simple question: why does a book wobble erratically in flight when rotated in the presence of drag forces? In light of this phenomenon, our research group has conducted research concerning the nature of a parallelepiped’s rotation in three-dimensional space, including the integration of dynamic drag effects and the manipulation of initial conditions to plot the motion of a book-shaped object in space. This model was then compared to accelerometer data we collected from a sensor-enabled Pasco Smart Cart with identical geometry to the computational model. Comparison with our experimental data sets ultimately led to the development of a realistic computational model for the motion of a parallelepiped in three-dimensional space, further explaining the erratic motion of a book-shaped object in flight. Additionally, this model has proven to be a potential instance of chaotic motion as a result of drag forces upon a rigid, rotating body in space, as exhibited by unexplained perturbations in the latest computational models upon changing the initial kinematic parameters for the object.

Joseph Gutheinz
University of St. Thomas

Date submitted: 20 Feb 2018