Unbound states of 32Cl studied via the 32S(3He,t)32Cl charge-exchange reaction

M. Matoš, LSU, D.W. Bardayan, ORNL, J.C. Black-Mon, LSU, J.A. Clark, ANL, C.M. Deibel, ANL, JINA, L. Linhardt, LSU, C.D. Nesaraja, ORNL, P.D. O’Malley, Rutgers, P.D. Parker, Yale, K.T. Schmitt, UTK — Breakout from the SiP cycle [1], which is closed by the 31S (p,α)28P reaction, can occur via the 31S(p,γ)32Cl proton-capture reaction. The duration of the cycle influences the timescale of explosive hydrogen burning. At novae temperatures 0.1-0.4 GK, the 31S(p,γ)32Cl reaction rate is dominated by 31S+p resonances. Discrepancies in the 32Cl resonance energies have been reported in previous measurements [1,2]. We have used the 32S(3He,t)32Cl charge-exchange reaction to produce unbound states in 32Cl and determined their excitation energies by detecting the tritons at the focal plane of the Enge Spectrograph at the Yale University’s Wright Nuclear Structure Laboratory. To determine the proton branching ratios the decay protons coming from the residual 32Cl nuclei have been detected using a silicon-strip detector array around the target position. Results from the experiment will be presented.