Indistinguishable photons from independent semiconductor single-photon devices THADDEUS LADD1, KAORU SANAKA2, Stanford University, ALEXANDER PAWLIS3, KLAUS LISCHKA, University of Paderborn, Germany, YOSHIHISA YAMAMOTO4, Stanford University — We demonstrate quantum interference between single photons generated by the radiative decay processes of excitons that are bound to isolated fluorine donor impurities in ZnSe/ZnMgSe quantum-well nanostructures. Single photon generation is confirmed by auto-correlation experiments, and indistinguishability of single photons from independent devices is confirmed via a Hong-Ou-Mandel dip. These results indicate that donor impurities in appropriately engineered semiconductor structures can portray atom-like homogeneity and coherence properties, potentially enabling scalable technologies for future large-scale optical quantum computers and quantum communication networks.

1also at National Institute of Informatics, Tokyo, Japan
2also at National Institute of Informatics, Tokyo, Japan
3also at Stanford University
4Also at National Institute of Informatics, Tokyo, Japan

Thaddeus Ladd
Stanford University

Date submitted: 17 Nov 2008