Binding of solvated peptide (EPLQLKM) with a graphene sheet: all-atom-to-all residue hierarchical approach

AERIAL CAMDEN, ZHIFENG KUANG, RAJIV BERRY, RAJESH NAIK, BARRY FARMER, Air Force Research Laboratory, NADIA DRAGNEVA, WELY FLORIANO, OLEG RUBEL, Lakehead University, Canada, RAS PANDEY, University of Southern Mississippi — Binding of peptide EPLQLKM with a graphene sheet is studied by a coarse-grained computer simulation involving all-atom-to-all-residue interactions between amino acids and substrate. Estimates of the binding energy of amino acids with the graphene sheet in presence of aqueous solvent with three independent all-atom MD simulations are used as input to residue-substrate interaction in an all-residue coarse-grained representation of peptides. Large-scale Monte Carlo simulations are performed to examine the binding of peptides with the input of three simulation residue-substrate interactions as a function of temperature. Despite a considerable difference in quantitative estimates of the binding energy of amino acids with three all-atom simulations, the results of peptide binding, i.e., relative strength of binding (including anchoring residues) response to temperature remains the same. Differences and similarities in binding as a result of three simulated-interactions will be discussed in detail.

1This work is supported by the Air Force Research Laboratory.