The effects of magnetic field and temperature quenches on non-equilibrium relaxation properties of vortex lines in type-II superconductors

HIBA ASSI, Department of Physics, VA Tech, ULRICH DOBRAMYSIL, Mathematical Institute, University of Oxford, MICHEL PLEIMLING, UWE TÄUBER, Department of Physics, VA Tech — Technological applications of type-II superconductors require a deep understanding of the dynamics of vortex matter in these complex materials. We model vortices in the London limit as interacting elastic lines, and simulate their dynamics employing a Langevin molecular dynamics (LMD) algorithm. This LMD algorithm is utilized to investigate the non-equilibrium relaxation properties of interacting lines, subject to randomly-placed point or correlated columnar pinning sites, by studying various two-time correlation functions. We consider experimentally-motivated initial conditions by applying quenches in the system temperature or the magnetic field, which is realized by suddenly adding or removing vortex lines from the system.

1Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

Hiba Assi
Department of Physics, VA Tech

Date submitted: 05 Nov 2013

Electronic form version 1.4