Abstract Submitted for the APR20 Meeting of The American Physical Society

Helicity at Small x: Bringing Back the Quarks¹ YOSSATHORN TAWABUTR, YURI KOVCHEGOV, Ohio State Univ - Columbus — We find the small-x asymptotics of the quark helicity distribution in the large- $N_c \& N_f$ limit by numerically solving small-x evolution equations derived in earlier works, where N_c is the number of quark colors and N_f is the number of quark flavors. Previously, those evolution equations were solved only in the large- N_c limit. We find that Δq oscillates as a function of $\ln(1/x)$ at small x, with the oscillation frequency being dependent on the number of quark flavors, N_f . Our result may account for the apparent oscillation in the strange quark helicity distribution Δs as a function of Bjorken x. For $N_f = 0$, these oscillations disappear; this is why they were not seen in the earlier large- N_c studies. Our work presents the most precise theoretical determination of the small-x asymptotics of the quark helicity distribution based on the Wilson line approach to small-x evolution. When combined with the future EIC data, our approach should allow for a precise determination of the amount of the proton spin coming from small-x partons, thus contributing to the resolution of the proton spin puzzle.

¹This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286.

> Yossathorn Tawabutr Ohio State Univ - Columbus

Date submitted: 10 Jan 2020

Electronic form version 1.4