Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Characterization of the Oxidation State of ²²⁹Th Recoils Implanted in MgF₂ for the Search of the Low-lying ²²⁹Th Isomeric State BEAU BARKER, EDMUND MEYER, MIKE SCHACHT, LEE COLLINS, MAR-IANNE WILKERSON, XINXIN ZHAO, Los Alamos National Laboratory — The low-lying (7.8 eV) isomeric state in ²²⁹Th has the potential to become a nuclear frequency standard. 229 Th recoils from 233 U decays have been collected in MgF₂ for use in the direct search of the transition. Of interest is the oxidation state of the implanted ²²⁹Th atoms as this can have an influence on the decay mechanisms and photon emission rate. Too determine the oxidation state of the implanted ²²⁹Th recoils we have employed laser induced florescence (LIF), and plan-wave pseudopotential DFT calculations to search for emission from thorium ions in oxidation states less than +4. Our search focused on detecting emission from Th^{3+} ions. The DFT calculations predicted the Th^{3+} state to be the most likely to be present in the crystal after Th^{4+} . We also calculated the band structure for the Th^{3+} doped MgF₂ crystal. For LIF spectra a number of excitation wavelengths were employed, emission spectra in the visible to near-IR were recorded along with time-resolved emission spectra. We have found no evidence for Th^{3+} in the MgF₂ plates. We also analyzed the detection limit of our apprentice and found that the minimum number of Th^{3+} atoms that we could detect is quite small compared to the number of implanted ²²⁹Th recoils. The number of implanted ²²⁹Th recoils was derived from a γ -ray spectrum by monitoring emission from the daughters of 228 Th. These were present in the MgF₂ plates due to a 232 U impurity, which decays to 228 Th, in the source. LA-UR-16-20442

> Beau Barker Los Alamos National Laboratory

Date submitted: 29 Jan 2016

Electronic form version 1.4