Transport of Concentrated Particles in Successively Bifurcating Vessels

YINGHUI LI², University of Minnesota, OMID AMILI³, University of Toledo, FILIPPO COLETTI⁴, University of Minnesota — With evolving imaging and computing technologies, the flow characteristics in successive bifurcating conduits have been extensively investigated to understand transport in the respiratory and cardiovascular systems. Specifically for tumor embolization, the ability to predict the fate of injected particles in bifurcating vessels is highly desirable to enable physicians to reach target sites. Predicting particle transport in such complex geometries is a challenging problem, and most past studies focused on very dilute regimes in which particles are not expected to alter the underlying flow. In the present study, we use particle tracking velocimetry to investigate the spatial distribution, velocity, acceleration, and dispersion of finite-size particles in a 4-generation bifurcating model. We consider a regime especially relevant to vascular embolization: a physiologic range of bulk flow Reynolds number and a suspension of neutrally buoyant particles of non-negligible size compared to the vessel diameter, reaching volume fractions up to a few percent. We explore how particles distribute among the distal branches and the influence of the release location. In addition, the effect of particle volume fraction is studied through Lagrangian statistics of the particle trajectories.

¹National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems, grant 1453538)
²Department of Biomedical Engineering
³Department of Mechanical, Industrial, and Manufacturing Engineering
⁴Department of Aerospace Engineering and Mechanics

Yinghui Li
University of Minnesota

Date submitted: 29 Jul 2020

Electronic form version 1.4