Abstract Submitted for the DNP13 Meeting of The American Physical Society

Search for one- and two-phonon octupole vibrational states in the spherical nuclei near ¹³²Sn J.K. HWANG, J.H. HAMILTON, A.V. RAMAYYA, Vanderbilt University, Y.X. LUO, Vanderbilt University/LBNL — Excited high spin states in 135 I, 136 Xe, 137 Cs, 138 Ba, 139 La, 140 Ce and 142 Nd with N=82 are reorganized and interpreted in a different way to find one- phonon octupole vibrational (POV) bands. Two nearly identical (similar) bands with $\Delta I=3$ are found in these nuclei. From the presence of two nearly identical excited bands with $\Delta I=3$ in these nuclei, one-POV bands are proposed. Also, high spin states of ¹³⁴Sb, ^{134,135}Te, ^{135,136}I, ¹³⁷Xe and ¹³⁹Ba near ¹³²Sn are reanalyzed in order to search for one- and two-POV states. New spins and parities are tentatively assigned to the 2203.9 keV state in 137 Xe and the 1976.6 and 2091.7 keV states in 139 Ba from the state energy plots of the N = 82 and 83 nuclei. High spin states of 134 Sb, 134,135 Te, 135,136 I, 137 Xe and ¹³⁹Ba connected by E1, E3/M2 and E3 transitions are proposed, for the first time, as zero-, one- and two-POV states. One- and two-POV states in ¹³⁴Sb and ¹³⁵Te are built on a 7⁻ ($\pi g_{7/2} \nu f_{7/2}$) state and a 19/2⁻ ($\nu f_{7/2} \otimes 6_1^+$) state, respectively. One-POV states built on the $19/2^-(\nu f_{7/2} \otimes 6_1^+)$ and the $21/2^-(\nu h_{9/2} \otimes 6_2^+)$ states coexist in ¹³⁷Xe. Then, one- and two-POV states in ¹³⁹Ba are built only on the $21/2^{-}$ ($\nu h_{9/2} \otimes 6_{2}^{+}$) state. One- and two-POV states in ¹³⁴Te are built on the 6_{2}^{+} state with some mixing with the 6_1^+ state.

> J.K. Hwang Vanderbilt University

Date submitted: 26 Jun 2013

Electronic form version 1.4