Abstract Submitted
for the DPP20 Meeting of
The American Physical Society

Oxygen opacity experiments for stellar interiors. JAMES BAI-LEY, G.P. LOISEL, T. NAGAYAMA, G.S. DUNHAM, S.B. HANSEN, T. GOMEZ, Sandia National Laboratories, H. HUANG, C. MONTON, General Atomics, D.E. WINGET, M. MONTGOMERY, University of Texas, Austin, R.F. HEETER, LLNL, T.J. PERRY, D.P. KILCREASE, C.J. FONTES, LANL, C. BLANCARD, PH. COSSE, G. FAUSSURIER, J.-C. PAIN, F. GILLERON, CEA — Testing oxygen opacity calculations is important for understanding the Sun and white dwarf stars. Near the solar convection zone base, $T_e \sim 180$ eV, $n_e \sim 9 \times 10^{22}$ electrons/cc, and oxygen is mostly H-like or fully-stripped. Highly-ionized oxygen produces a relatively simple opacity spectrum, but its calculation relies on untested approximations for continuum lowering and line broadening. We initiated stellar oxygen opacity measurements on Z with progress in two key areas: i) target fabrication and ii) extending the measurement spectral range. We created SiO$_2$ half-moon samples with oxygen areal density greater than 1×10^{19} atoms/cm2 and successfully recorded transmission through the heated sample on Z. The 6-18.5 Å spectral range includes the critical oxygen bound-free absorption, the Ly beta transition, and the opacity window region on the short wavelength side of the Ly alpha line. The Si K-shell spectrum is less perturbed by density effects and provides plasma diagnostic information. Experimental results and prospects for refining stellar interior calculations will be discussed. Sandia National Laboratories is a multimission laboratory managed and operated by NTES LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE’s NNSA under contract DE-NA0003525.

James Bailey
Sandia National Laboratories

Date submitted: 29 Jun 2020
Electronic form version 1.4