Abstract Submitted for the MAR13 Meeting of The American Physical Society High-Performance Topological Insulator Bi₂Se₃ Nanowire Field Effect Transistors¹ HAO ZHU, GMU, CURT RICHTER, NIST, ERHAI ZHAO, HUI YUAN, HAITAO LI, DIMITRIS IOANNOU, QILIANG LI, GMU, GEORGE MASON UNIVERSITY TEAM, NIST TEAM — Single crystal topological insulator Bi₂Se₃ nanowires were synthesized by Vapor-Liquid-Solid (VLS) mechanism. Bi₂Se₃ NW field-effect transistors were fabricated by using self-alignment method with HfO₂ as the gate dielectric. Bi₂Se₃ NWFETs were measured in vacuum at different temperatures. Excellent MOSFET characteristics were achieved: smooth and well-saturated output characteristics, large On/Off ratio (10^7) , zero Off-state current and good subthreshold slope in transfer characteristics. We have observed linear behavior of the saturation current extracted from the I_{ds} - V_{ds} curves as a function of the overthreshold voltage (V_g-V_{th}), which indicated the main role of the metallic surface conduction at Bi₂Se₃ nanowire channel. Both effective mobility and field-effect mobility have been extracted. Very good effective mobility (> 5000cm²V⁻¹s⁻¹ at 77 K) was obtained under a low gate voltage. From off-state current we calculated the band gap of bulk about 0.33 eV, which is in a good agreement with reported value of 0.35 eV. ¹Supported by NSF Career grant 0846649. Qiliang Li GMU Date submitted: 21 Nov 2012 Electronic form version 1.4