Abstract Submitted for the MAR16 Meeting of The American Physical Society

Quantum Ultra-Walks: Walks on a Line with Spatial Disorder STEFAN BOETTCHER², STEFAN FALKNER³, Pysics Department, Emory University — We discuss the model of a heterogeneous discrete-time walk on a line with spatial disorder in the form of a set of ultrametric barriers. Simulations show that such an quantum ultra-walk spreads with a walk exponent d_w that ranges from ballistic $(d_w = 1)$ to complete confinement $(d_w = \infty)$ for increasing separation $1 \le 1/\epsilon < \infty$ in barrier heights. We develop a formalism by which the classical random walk as well as the quantum walk can be treated in parallel using a coined walk with internal degrees of freedom. For the random walk, this amounts to a 2nd-order Markov process with a stochastic coin, better know as an (anti-)persistent walk. The exact analysis, based on the real-space renormalization group (RG), reproduces the results of the well-known model⁴ of "ultradiffusion," $d_w = 1 - \log_2 \epsilon$ for $0 < \epsilon \le 1/2$. However, while the evaluation of the RG fixed-points proceeds virtually identical, for the corresponding quantum walk with a unitary coin⁵ it fails to reproduce the numerical results. A new way to analyze the RG is indicated.

```
<sup>1</sup>supported by NSF-DMR 1207431

<sup>2</sup>http://www.physics.emory.edu/faculty/boettcher/

<sup>3</sup>now U. of Freiburg,
http://aad.informatik.uni-freiburg.de/people/falkner/

<sup>4</sup>J. Phys. A 19(1986)L269

<sup>5</sup>Phys. Rev. A 90(2014)032324, http://arxiv.org/abs/1311.3369
```

Stefan Boettcher Pysics Department, Emory University

Date submitted: 05 Nov 2015 Electronic form version 1.4