APR17-2016-000114

Abstract for an Invited Paper for the APR17 Meeting of the American Physical Society

Nuclear Excitation by Electronic Transition of U-235¹ PERRY CHODASH, Lawrence Livermore National Laboratory

Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to exist in numerous isotopes. NEET is the inverse of bound internal conversion and occurs when an electronic transition couples to a nuclear transition causing the nucleus to enter an excited state. This process can only occur for isotopes with low-lying nuclear levels due to the requirement that the electronic and nuclear transitions have similar energies. One of the candidate isotopes for NEET, 235 U, has been studied several times over the past 40 years and NEET of 235 U has never been conclusively observed. These past experiments generated conflicting results with some experiments claiming to observe NEET of 235 U and others setting limits for the NEET rate. If NEET of 235 U were to occur, the uranium would be excited to its first excited nuclear state. The first excited nuclear state in 235 U is only 76 eV, the second lowest known nuclear state. Additionally, the 76 eV state is a nuclear isomer that decays by internal conversion with a half-life of 26 minutes. In order to measure whether NEET occurs in 235 U and at what rate, a uranium plasma was required. The plasma was generated using a Q-switched Nd:YAG laser outputting 789 mJ pulses of 1064 nm light. The laser light was focused onto uranium targets generating an intensity on target of order 10^{12} W/cm². The resulting plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. Measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. An upper limit for the NEET rate of 235 U was determined.

¹This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The U.S. DHS, UC Berkeley, the NNIS fellowship and the NSSC further supported this work.