Near Threshold Positron Impact Ionization of Hydrogen

KRISTA JANSEN, S.J. WARD, University of North Texas, J. SHERTZER, College of the Holy Cross, J.H. MACEK, University of Tennessee — The hyperspherical hidden crossing method is used to calculate the ionization cross section for $e^+\cdot H$ near threshold. The Wannier ridge for positron impact ionization corresponds to a co-linear arrangement with the electron between the positron and proton and $r_-/r_+ = .4643$. The adiabatic Hamiltonian for total angular momentum zero is expanded about the saddle point and the analytic adiabatic energies are used to obtain the threshold law for breakup: $\sigma(E) \propto E^{2.64} \exp[-0.49\sqrt{E}]$. Our results are consistent with the previous values of the Wannier exponent1 and the second order correction terms to the threshold law2,3. Using our numerical results for the transition probability in the interaction region, we calculated the absolute S–wave ionization cross section.