Abstract for an Invited Paper
for the DAMOP08 Meeting of
the American Physical Society

Creation of heteronuclear Feshbach molecules with 85Rb and 87Rb
SCOTT PAPP, JILA and University of Colorado

We will report on the creation of ultracold heteronuclear Feshbach molecules. Heteronuclear molecules in low-lying vibrational states are particularly interesting since they are predicted to exhibit a permanent dipole moment due to the unequal distribution of electrons. Although no significant permanent dipole moment is expected to exist in a 85Rb – 87Rb molecule, our work demonstrates a first step toward the efficient production of ground-state ultracold heteronuclear molecules. Starting with a 87Rb BEC and a cold thermal gas of 85Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. The presence of two species with different quantum degeneracy provides a rich system for testing our understanding of the conversion efficiency from atoms to molecules. We can also create a simultaneously Bose-condensed sample of 85Rb and 87Rb. The effects of immiscibility in this two-component quantum fluid on the creation of heteronuclear molecules will be discussed.