Direct Numerical Simulations of Turbulent Flows over Superhydrophobic Surfaces1 MICHAEL B. MARTELL, J. BLAIR PEROT, JONATHAN P. ROTHSTEIN, University of Massachusetts Amherst — Direct numerical simulations are used to investigate the drag reducing performance of superhydrophobic surfaces in turbulent channel flow. Slip velocities, wall shear stresses, and Reynolds stresses are considered for a variety of superhydrophobic surface micro-feature geometry configurations at a friction Reynolds number of $Re_f = 180$. For the largest micro-feature spacing of 90\textmu m an average slip velocity over 75\% of the bulk velocity is obtained, and the wall shear stress reduction is nearly found to be nearly 40\%. The simulation results suggest that the mean velocity profile near the superhydrophobic wall continues to scale with the wall shear stress, but is offset by a slip velocity that increases with increasing micro-feature spacing.

1The authors would like to thank the Office of Naval Research for support of this research under grant N00014-06-1-0497.

Michael B. Martell Jr.
University of Massachusetts Amherst