Search for one- and two-phonon octupole vibrational states in the spherical nuclei near 132Sn J.K. HWANG, J.H. HAMILTON, A.V. RAMAYYA, Vanderbilt University, Y.X. LUO, Vanderbilt University/LBNL — Excited high spin states in 135I, 136Xe, 137Cs, 138Ba, 139La, 140Ce and 142Nd with N=82 are reorganized and interpreted in a different way to find one-phonon octupole vibrational (POV) bands. Two nearly identical (similar) bands with $\Delta I=3$ are found in these nuclei. From the presence of two nearly identical excited bands with $\Delta I=3$ in these nuclei, one-POV bands are proposed. Also, high spin states of 134Sb, 134,135Te, 135,136I, 137Xe and 139Ba near 132Sn are reanalyzed in order to search for one- and two-POV states. New spins and parities are tentatively assigned to the 2203.9 keV state in 137Xe and the 1976.6 and 2091.7 keV states in 139Ba from the state energy plots of the $N=82$ and 83 nuclei. High spin states of 134Sb, 134,135Te, 135,136I, 137Xe and 139Ba connected by E1, E3/M2 and E3 transitions are proposed, for the first time, as zero-, one- and two-POV states. One- and two-POV states in 134Sb and 135Te are built on a $7^- (\pi g_{7/2}^{\nu}f_{7/2}^{\nu})$ state and a $19/2^- (\nu f_{7/2}^{\nu} \otimes 6_1^+)$ state, respectively. One-POV states built on the $19/2^- (\nu f_{7/2} \otimes 6_1^+)$ and the $21/2^- (\nu h_{9/2} \otimes 6_2^+)$ states coexist in 137Xe. Then, one- and two-POV states in 139Ba are built only on the $21/2^- (\nu h_{9/2} \otimes 6_2^+)$ state. One- and two-POV states in 134Te are built on the 6_2^+ state with some mixing with the 6_1^+ state.

J.K. Hwang
Vanderbilt University

Date submitted: 26 Jun 2013
Electronic form version 1.4