Compton Scattering in Ignited Thermonuclear Plasmas1 FREDERIC HARTEMANN, CRAIG SIDERS, CHRIS BARTY, LLNL — Inertially confined, ignited thermonuclear D-T plasmas will produce intense blackbody radiation at temperatures $T \sim 20$ keV; it is shown that the injection of GeV electrons into the burning core can efficiently generate high-energy Compton scattering photons. Moreover, the spectrum scattered in a small solid angle can be remarkably monochromatic, due to kinematic pileup; peak brightness in excess of 10^{29} photons/(mm$^2 \times$ mrad$^2 \times s \times 0.1\%$ bandwidth) are predicted. Electron focusing of the γ-rays could produce electromagnetic fields exceeding the Schwinger critical field.

1This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.