Singletip Langmuir Measurements of UW-RWM Plasma1 DAVID HANNUM, C.B. FOREST, R. KENDRICK, UW-Madison — The rotating wall machine is a linear screw-pincher built to study the role of different wall boundary conditions on the resistive wall mode (RWM). Its plasma is created by a hexagonal array of electrostatic guns. The central seven guns can be biased to discharge up to 1 kA of current each. The 20 cm diameter, 1.2 m long plasma column is held in place by a 600 G (max) axial guide field. A singletip Langmuir probe inserted from the opposite end of the chamber yields measurements of T_e, n_e and V_p in r and z. Several multivariable fitting routines are employed on the I-V curve to derive the standard measurements. I will present 2D Langmuir profiles of the unbiased plasma column in several density and field configurations; biased plasma current measurements are an ongoing concern.

1Funded by DoE