X-ray Thomson Scattering from Spherically Imploded ICF Ablators

ANDREA KRITCHER, TILO DOEPPNER, OTTO LANDEN, SIEGFRIED GLENZER, Lawrence Livermore National Laboratory — Time-resolved X-ray Thomson scattering measurements from spherically imploded inertial fusion capsules-type targets have been obtained for the first time at the Omega OMEGA laser facility to characterize the in-flight properties of ICF ablators. In these experiments, the non-collective, or microscopic particle behavior, of imploding CH and Be shells, was probed using a 9 keV Zn He-alpha x-ray source at scattering angles of 113° and 135°. For two drive pulse shapes, as an example, the analysis of In-flight scattering measurements from one set of directly-driven compressed 8600 μm-diameter, 40-μm thick Be shells taken (4.2 ns after the start of the compression beams when compressed a factor of ≈ 4.83x) yielded electron densities of \(1.2\pm0.23\times10^{24}\) cm\(^{-3}\), temperatures of \(13\pm32\) eV, and an ionization state of Be(2+), with uncertainties in the temperature and density of about 40% and 20%. These conditions resulting in an inferred adiabat (ratio of plasma pressure to Fermi degenerate pressure) of 1.797 \(\pm0.3/-.5\) with an error of about 30%. The high signal-to-noise and high signal-to-background ratio of data obtained in these experiments provides a platform for studying the adiabat of other indirect-drive ICF ablators such as CH and High Density Carbon (HDC) ablators and demonstrates the viability of using this diagnostic to study the in-flight properties adiabat of implosion targets at the National Ignition Facility (NIF).