Evidence for Separatrix Formation and Sustainment with Steady Inductive Helicity Injection

B.S. VICTOR, T.R. JARBOE, A.C. HOSSACK, D.A. ENNIS, B.A. NELSON, R.J. SMITH, C. AKCAY, C.J. HANSEN, G.J. MARKLIN, N.K. HICKS, University of Washington — The Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI) has achieved a breakthrough in the development of a new, more efficient current drive method for magnetic confinement fusion. Results include the first sustainment of toroidal plasma current of over 50 kA at 3 times the injected currents added in quadrature, the ratio of current density to electron density exceeding 10^{-14} A·m, and toroidal current persistence of 0.6 ms after injector shut off. Separatrix toroidal currents—currents not linking the helicity injectors—are sustained at up to 40 kA. Results are achieved in HIT-SI during deuterium operations immediately after helium operations. Toroidal mode measurements for these high performance deuterium shots have a three stage evolution: initial growth of an $n=1$ eigenstate, rapid transition to a weak toroidal current and toroidal current growth coupled to a decrease in the $n=1$ activity with near constant helicity injection.

Work supported by USDoE and ARRA.