Properties of Nonstoichiometric SrRu$_{1-v}$O$_3$ Perovskites

B. DABROWSKI, S. KOLESNIK, O. CHMAISSEM, J. MAIS, Department of Physics, Northern Illinois University, M. AVDEEV, J.D. JORGENSEN, Materials Science Division, Argonne National Laboratory — Annealing of stoichiometric SrRuO$_3$ perovskites in high-pressure oxygen of 600 atm. near 1100°C produces SrRu$_{1-v}$O$_3$ compounds with vacancies on the Ru-sites. The creation of Ru vacancies rapidly suppresses the ferromagnetic ordering temperature, T_C, from 163 K to 45 K with increase of $v \approx 0.09$. The resistivity shows a metallic behavior near room temperature with progressively more insulating behavior at low temperatures for increasing v. All samples display clear metallic-like decrease of the resistivity and negative magneto-resistance right below T_C. Structural changes that accompany creation of Ru-site vacancies indicate reduced charge screening caused by the Ru-vacancies that offsets expected decrease of the average interatomic distance Ru–O. The b and c lattice parameters and the unit cell volume are virtually temperature independent for the stoichiometric material below T_C. We show that this previously reported invar-effect originates from freezing of the octahedral tilting about the [001] axis that can be observed for both stoichiometric and Ru-deficient samples. Spontaneous magnetostriction has the largest effect on the b axis of the orthorhombic Pbnm crystal structure.

1Supported by NSF (DMR-0302617), the U.S. Dept. of Education, and U.S. Dept. of Energy, BES Materials Sciences (W-31-109-ENG-38)