Phase Separation in Charge-Stabilized Colloidal Suspensions: A Simulation Study

BEN LU, ALAN R. DENTON, Department of Physics, North Dakota State University — A variety of experiments suggest that deionized suspensions of highly charged colloids may exhibit an unusual fluid phase separation. Here we report results of Gibbs ensemble Monte Carlo simulations of a model system consisting of charged colloidal macroions and microions (dissociated counterions and salt ions) dispersed in water. As input to the simulations, we use effective electrostatic interactions — a screened-Coulomb macroion-macroion pair potential and a one-body volume energy — predicted by mean-field linear response theory. The volume energy — a natural byproduct of integrating out from the partition function the microion degrees of freedom — plays a crucial role in the acceptance probabilities for trial volume changes and particle transfers in the Gibbs ensemble. We present the bulk fluid phase diagram, which exhibits vapor-liquid coexistence at low salt concentrations ($c_s < 1$ mM), and compare with theoretical predictions.

1Support from National Science Foundation grant DMR-0204020 is gratefully acknowledged.

Ben Lu
Department of Physics, North Dakota State University

Date submitted: 23 Nov 2004 Electronic form version 1.4