Intrinsic exchange bias effect in a charge-ordered manganite

DARIO NIEBIESKIKWIAT, MYRON SALAMON, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign — Pr$_{1/3}$Ca$_{2/3}$MnO$_3$ is a charge-ordered (CO) and antiferromagnetic (AFM) manganite, with a Néel temperature $T_N \sim 160$K. However, for temperatures below T_N the magnetization vs. field $(M-H)$ loops exhibit hysteresis and a shift towards a negative field ($-H_E$) when the sample is cooled in a positive field. Both the exchange bias field (H_E) and the width of the hysteresis loop present a strong dependence on the value of the cooling field (H_{cool}). The observed dependence is successfully described in terms of nanometer-sized ferromagnetic (FM) inclusions, interacting via exchange coupling with a disordered shell at the interface with the CO/AFM matrix. The existence of a disordered spin layer around the FM bubbles is also consistent with the observed training effect of the exchange bias. The calculated size of the FM domains, $D \sim 1.9$nm, is similar to that found by neutron scattering in other electron doped manganites. We acknowledge useful discussions with Chris Leighton.