Raman pressure effects and internal stress in network glasses FEI WANG, S. MAMEDOV, P. BOOLCHAND, B. GOODMAN, Univ. of Cincinnati, MEERA CHANDRA SEKHAR, Univ. of Missouri — Intermediate phases are predicted to be unstressed elastic phases of network glasses. The case of binary Ge$_x$Se$_{1-x}$ glasses reveal the intermediate phase to reside in the $0.20 < x < 0.25$ range1. We have now performed2 Raman scattering on Ge$_x$Se$_{1-x}$ glasses under pressure and find a steady increase in the frequency of modes of corner-sharing GeSe$_4$ tetrahedra when the external pressure P exceeds a threshold value P_c. The threshold pressure $P_c(x)$ decreases with x to nearly zero for $0.20 < x < 0.25$, then increases up to $x = 1/3$. P_c indicates the presence of local stress at the Raman active units; so its vanishing suggests that these units are part of an isostatically rigid backbone. Isostaticity also accounts for the non-aging behavior of glasses observed in this same composition range2 that is identified with the intermediate phase in this binary glass system.

Supported by NSF grant DMR-0456472

Fei Wang

Date submitted: 30 Nov 2004 Electronic form version 1.4