Magnetic fluctuations of filled skutterudites emerging in the transition region between singlet and triplet states

TAKASHI HOTTA, Advanced Science Research Center, Japan Atomic Energy Research Institute — In order to clarify magnetic properties of filled skutterudites, we investigate the Anderson model including seven f orbitals hybridized with a_{u} conduction band. By using the numerical renormalization group method, we evaluate magnetic susceptibility and entropy of f electron for $n=1$~13, where n is local f-electron number. Then, we find that f-electron states are clearly distinguished as itinerant Γ_{7} and localized Γ_{8} in the filled skutterudite structure. For $n=2$ corresponding to Pr-based filled skutterudites, even if the ground state is Γ_{1} singlet, there remain significant magnetic fluctuations from $\Gamma_{4}^{(2)}$ triplet state with small excitation energy. We envision a scenario that unconventional superconductivity is induced by such magnetic fluctuations in a limited region in which singlet and triplet states are interchanged.