Origin
of the fast magnetization tunneling in [Ni(hmp)(tBuEtOH)Cl]₄

JON LAWRENCE, CEM KIRMAN, STEPHEN HILL, University of Florida, EN-CHE YANG, DAVID HENDRICKSON, University of California at San Diego, UNIVERSITY OF FLORIDA, PHYSICS DEPT. COLLABORATION, UNIVERSITY OF CALIFORNIA AT SAN DIEGO, CHEMISTRY DEPT. COLLABORATION — High-frequency (40-360 GHz), angle-dependent EPR data have been collected for single-crystals of [Ni(hmp)(dmb)Cl]₄, and [Ni₀.₀₂Zn₀.₉₈(hmp)(dmb)Cl]₄. The all-nickel complex behaves as a single-molecule magnet (SMM) at low temperatures, displaying hysteresis and magnetic quantum tunneling. However, in spite of its high symmetry (S₄), the relaxation is found to be very fast. We show that the origin of this behavior is related to a 4th-order transverse crystal-field interaction, \(B₄^4(S^4_+ + S^4_-)\), which produces a significant tunnel-splitting (~10 MHz) of the \(m_s = \pm 4\) ground state of this \(S = 4\) SMM. The fourth-order \(B₄^4\) and uniaxial \(D\) crystal-field strengths can be related to the directionality and magnitude of the single-ion interactions \(D_i\) at the individual Ni\(^{II}\) sites, as determined for the doped crystals. Variable-temperature EPR measurements also reveal the locations of excited spin states (\(S = 3, 2, \ldots\) ), enabling estimates of intra-molecular exchange coupling strengths.

Jon Lawrence
University of Florida