Searching for viable transition paths of pressure driven phase transition in solid xenon: First-principle study

EUNJA KIM, Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 — Pressure induced structural transformation in solid xenon has been investigated using a first-principles calculation. Enthalpy calculation confirms that the fcc-to-hcp transformation begins around 5 GPa and finishes up around 70 GPa. We propose two transformation pathways in solid xenon such as a stacking disorder growth pathway at low pressure (Path-I) and an orthorhombic distortion pathway followed by atomic rearrangements at high pressure (Path-II). Delicate interplay of enthalpy and energy barrier will be discussed to explain the underlying mechanism of how solid xenon selects the proper transformation pathways under pressure.

1This work was supported in part by the Department of Energy under Cooperative Agreement DE-FC08-98NV13410.