Large magneto-dielectric coupling in orthorhombic YMnO$_3$ and HoMnO$_3$1 BERND LORENZ, Y. Q. WANG, Y. Y. SUN, C. W. CHU2, TCSUH, University of Houston — We have found a remarkable increase (up to 60 \%) of the dielectric constant with the onset of magnetic order at 42 K in the metastable orthorhombic structures of YMnO$_3$ and HoMnO$_3$ that proves the existence of a strong magneto-dielectric coupling in the compounds. Magnetic, dielectric, and thermodynamic properties show distinct anomalies at the onset of the incommensurate magnetic order and thermal hysteresis effects are observed around the lock-in transition temperature at which the incommensurate magnetic order locks into a temperature independent wave vector. The orders of Mn$^{3+}$ spins and Ho$^{3+}$ moments both contribute to the magneto-dielectric coupling. A large magneto-dielectric effect was observed in HoMnO$_3$ at low temperature where the dielectric constant can be tuned by an external magnetic field resulting in a decrease of up to 8 \% at 7 Tesla. By comparing data for YMnO$_3$ and HoMnO$_3$ the contributions to the coupling between the dielectric response and Mn and Ho magnetic orders is separated.

1Supported in part by NSF, DoE, and the State of Texas through TCSUH

2also at LBNL, Berkeley and HKUST, Hong Kong

Bernd Lorenz
TCSUH, University of Houston

Date submitted: 30 Nov 2004

Electronic form version 1.4