Local self-energy approach for electronic structure calculations
NIKOLAY ZEIN, SERGUEI SAVRASOV, New Jersey Institute of Technology,
GABRIEL KOTLIAR, Rutgers University — We implement method for electronic
structure calculations which utilizes GW approximation combined with dynamical
mean field theory (DMFT). To study the locality of electronic self-energy operator
we compared all the relevant quantities as obtained in both R and k spaces. Con-
vergence of the exchange diagram as well of the correlational part for the self-energy
within GW and its first vertex correction are checked as functions of cutoff radius
in the real space. Our approach permits calculations beyond GW in a controllable
manner. Full self-consistency with respect to Green functions is implemented which
erases information on the starting point given either by LDA or Hartree-Fock ap-
proximations. Results obtained for a number of covalent and ionic semiconductors
will be discussed and compared with various existing calculations and experiments.
Work supported by NSF, DOE and CMSN.

Nikolay Zein
New Jersey Institute of Technology

Date submitted: 30 Nov 2004