Spin Lattice Relaxation as a Probe of Carrier Dynamics in Conducting Polymer Poly-3-methyl-thiophene

GERARD GAIDOS, W.G. CLARK, S.E. BROWN, University of California, Los Angeles, REGHU MENON, Indian Institute of Science, Bangalore — Measurements of the proton spin lattice relaxation rate \((1/T_1) \) in the conducting polymer poly-3-methyl-thiophene doped with PF\(_6\) are reported over the temperature \((T) \) and magnetic field \((B_0) \) ranges 2-300 K and 0.9-9.0 T respectively. They yield information regarding local magnetic fluctuations from charge carrier dynamics. Their dependence on \(T \) and \(B_0 \) deviate from the Korringa law for \(1/T_1 \) in metals. Below 35 K, two values for \(1/T_1 \) are observed. At higher \(T \), a more uniform relaxation is observed. These results suggest that localized and itinerant electrons are present in different regions of the sample, depending on \(T \) and the degree of sample disorder. This interpretation is further supported by magnetic susceptibility measurements, which demonstrate Fermi glass behavior at low \(T \). From these \(1/T_1 \) measurements, the disordered fraction of our samples is obtained. This work was supported by NSF Grants DMR-0334869 and INT-0225578 (WGC), and DMR-0203806 (SEB).

Gerard Gaidos

Date submitted: 30 Nov 2004

Electronic form version 1.4