Magnetic Field Dependence of the Specific Heat of Pb$_{1-x}$Gd$_x$Te

M. GORSKA, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland, J.R. ANDERSON, Y. DAGAN, University of Maryland, College Park, A. LUSAKOWSKI, A. JEDRZEJČZAK, Z. GOLACKI, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland — We have measured the magnetic specific heat, C_m, of Pb$_{1-x}$Gd$_x$Te ($x = 0.033$ and 0.054) at magnetic fields up to 2 T at temperatures from 0.4 to 9 K. This study is complementary to our magnetization measurements on the same system. The samples were prepared as bulk single crystals by the Bridgman method and were n-type with carrier concentrations of about 1×10^{19} cm$^{-3}$. The specific heat measurements were made using a Quantum Design PPMS system. We saw evidence for a maximum in C_m, which shifted to higher temperatures and became broader with increasing magnetic field. At zero magnetic field this maximum is expected to occur below 0.4 K for both samples and will be several times higher than that predicted by a model of superexchange interactions between nearest neighbors, which was based on previous experiments on Pb$_{1-x}$Eu$_x$Te.1 The present data will be compared with a model that takes into account the spin splitting of the ground state of the individual Gd ions, possibly due to local lattice distortions. 1 M. Górski, A. Lusakowski, A. Jedrzejczak, Z. Golacki, J. R. Anderson, H. Balci, Acta Phys. Pol. A 105, 631 (2004).

J.R. Anderson
University of Maryland, College Park

Date submitted: 22 Dec 2004

Electronic form version 1.4