Resonance Enhanced Weak Values in Attenuated Total Internal Reflection

XIAOBO YIN, LAMBERTUS HESSELINK, Department of Electrical Engineering, Stanford University, Stanford CA94305, HENRY CHIN, DAVID A. B. MILLER, Edward L. Ginzton Lab, Stanford University, Stanford CA94305, ZHAOWEI LIU, NICHOLAS FANG, XIANG ZHANG, Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA90095, HESSELINK TEAM, MILLER TEAM, ZHANG TEAM — We explain the first order nonspecular optical effects in reflection through a quantum mechanical approach based on weak measurements with postselection. A generalized formalism of the weak values in a reflection experiment is derived and both real and imaginary parts are associated with physically observable quantities, the Goos-Hänchen spatial shift, angular deviation, the Wigner delay time and the central carrier frequency shift. To verify the predicted effects, the weak values are amplified through an attenuated resonant device and examined in three optical experiments where three quantities out of four are examined with polarization modulation technique and an ultra-fast laser. The results are in good agreement with theoretical prediction by weak measurement.