Magnetic field-tuned superconductor-insulator transition in amorphous Nb_xSi_{1-x} HERVE AUBIN, ALEXANDRE POURRET, KAMRAN BEHNIA, JEROME LESUEUR, CNRS-ESPCI; 10 rue Vauquelin, Paris, France, CLAIRE MARRACHE-KIKUCHI, LAURENT BERGE, LOUIS DUMOULIN, CSNSM-IN2P3, Orsay, France — New results from a study of amorphous superconducting Nb_xSi_{1-x} thin films will be presented. This system is observed to undergo a superconductor-metal-insulator transition with variations of : Nb concentration, film thickness or magnetic field. On the superconducting compound with $x=0.15$, the superconducting transition temperature is observed to increase with the film thickness d, ($T_c=550mK$ for $d=1000Å$; $T_c=250mK$ for $d=125Å$), and, for each sample, a magnetic-field tuned superconductor-insulator transition is observed. The field tuned transition is characterized by an isobestic point (B_c,R_c) in the magnetic field variation of the magnetoresistance, plotted for various temperatures, that indicate the quantum critical nature of this superconductor-insulator transition and the absence of an intermediate metallic state. We carefully followed the temperature dependance of this critical point (B_c,R_c) and show that the critical field value (B_c) goes down to zero at a temperature scale $(1K)$ well above T_c for every sample studied. This analysis allows us to identify a large region in the diagram (H,T) where exists superconducting fluctuations.