Electron and Ion Emission from Clusters exposed to Strong Laser Fields

JOSEF TIGGESBÄUMKER, Institut of Physics, University of Rostock, Germany

When clusters interact with intense optical laser pulses energetic and highly charged atomic fragment ions e.g. are generated\(^1\). In contrast to atoms the efficiency of the process could be enhanced by choosing a pair of optical delayed pulses instead of a single but more intense femtosecond pulse\(^2\). In metals the stronger charging of the clusters can qualitatively be explained by a plasmon enhanced ionization process. We extended our studies and have made a compared analysis of the emission of highly charged ions and energetic electrons the interaction dynamics of intense femtosecond laser fields with nanometer-sized silver clusters. Using a pair of laser pulses with variable optical delay the time-dependent cluster response is resolved. A dramatic increase both in the atomic charge state of the ions and the maximum electron kinetic energy is observed for a certain delay of the pulses. Corresponding Vlasov calculations on a metal cluster model system indicate that enhanced cluster ionization as well as the generation of fast electrons coincide with resonant plasmon excitation.\(^3\)