Coverage dependent supramolecular structures: 2D phases of C$_{60}$:ACA monolayers on Ag(111)1 BO XU, CHENGGANG TAO, ELLEN WILLIAMS, JANICE REUTT-ROBEY, University of Maryland — The dependence of supramolecular structures on fractional molecular coverage in a 2-component adlayer has been investigated using scanning tunneling microscopy. A series of acridine-9-carboxylic acid (ACA) surface structures emerges sequentially when deposited on Ag(111) at room temperature. At low molecular coverage ($\theta < 0.4ML$), ACA forms a two-dimensional gas phase. Ordered ACA structures appear with increased coverage: firstly a chain structure composed of ACA molecules linked by O–H···N hydrogen bonds ($\theta > 0.4ML$), then a dimer structure composed of ACA dimers linked by carboxyl-carboxyl hydrogen bonds ($\theta \sim 1.0ML$). The structures of the C$_{60}$:ACA binary system depend on the coverage of pre-deposited ACA. When the initial ACA coverage is between 0.4 ML and 0.8 ML, subsequent C$_{60}$ deposition results in a hexagonal cooperative structure with C$_{60}$ period nearly three times as large as the normal C$_{60}$ 2-D packing of 1 nm, and exists in enantiopure domains. A C$_{60}$ quasi-chain structure is formed when the initial ACA coverage is above 0.8 ML. Parallel C$_{60}$ chains are separated in space by the ACA dimer structure. Chemically reasonable molecular packing model are presented based on the observed STM images.

1This work is supported by NSF under the MRSEC grant DMR0520471.