Cubic Dresselhaus Spin Orbit Coupling in Small Quantum Dots1

JACOB J. KRICHER, BERTRAND I. HALPERIN, Harvard University — Due to the suppression of linear spin-orbit effects in small quantum dots in two-dimensional electron systems, the cubic Dresselhaus spin-orbit coupling can play a significant role in such phenomena as the variance of conductance through a dot. We characterize the different spin-orbit coupling terms by the strength of the anti-crossings they induce in the eigenstates of a closed quantum dot as an in-plane magnetic field is increased, and we perform numerical simulations in a chaotic billiard model to estimate the RMS anti-crossing energy. We investigate the conditions under which the cubic Dresselhaus effects may be measurable and significant for realizable dot configurations.

1This work has been supported in part by NSF grants PHY-01-17795 and DMR-02-33773 and the Fannie and John Hertz Foundation.

Jacob J. Krich
Harvard University