Modeling the statistics of elementary calcium release events1

GHANIM ULLAH, PETER JUNG, Ohio University — Elementary Ca2+ signals, such as 'Ca2+ puffs', which arise from the release of Ca2+ from Endoplasmic Reticulum through small clusters of inositol 1,4,5-trisphosphate receptors, are the building blocks for intracellular Ca2+ - signaling. The small number of release channels involved during a Ca2+ puff renders the puffs stochastic with distributed amplitudes, durations and frequency, well characterized experimentally. We present a stochastic model that accurately describes simultaneously the statistical properties of the duration, amplitudes, frequencies, and spatial spread with a single set of parameters.

1NSF Grant No. (IOB-0345500)