Role of Disorder and Oxygen Reduction on Transport Properties in Pr$_{1.83}$Ce$_{0.17}$CuO$_{4+\delta}$

J. S. Higgins, Y. Dagan, M. C. Barr, R. L. Greene, Center for Superconductivity Research, Physics Department, University of Maryland, College Park, Maryland, USA 20742, B. D. Weaver, Naval Research Laboratory, Code 6818, Washington, DC, USA 20375 — We present a study on the effects of changing the oxygen content in the electron-doped superconducting cuprate Pr$_{2-x}$Ce$_x$CuO$_{4+\delta}$ (PCCO). Epitaxial, c-axis oriented, overdoped ($x = 0.17$) thin films were grown using a pulsed laser deposition technique, and the oxygen content was adjusted during a post-growth annealing process. In addition to the transition temperature (T_c), measurements of the Hall effect and resistivity were performed at low temperatures ($T < T_c$, $H > H_{c2}$) in several films of different oxygen content. We compare the disorder observed in these oxygenated samples with disorder induced by proton irradiation in an optimally annealed ($x = 0.17$) film. An analysis of the data demonstrates that a change in the oxygen content of PCCO has two separable effects: 1) a disorder effect, and 2) a doping effect similar to that of cerium.

This work was supported by NSF Grant DMR-0352735 and, in part, by ONR.

Current address: School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

J. S. Higgins

Center for Superconductivity Research, Physics Department, University of Maryland, College Park, Maryland, USA 20742

Date submitted: 29 Nov 2005 Electronic form version 1.4