First-order metal-insulator transitions in manganites: Are they universal?¹ KENNETH GRAY, QING’AN LI, STINE KLAUSEN, HONG ZHENG, STEPHAN ROSENKRANZ, RAY OSBORN, JOHN MITCHELL, Argonne National Laboratory — Conductivity data for La$_{2-x}$Sr$_{1+2x}$Mn$_2$O$_7$ (x=0.6) show a first-order transition from an orbital/charge-ordered insulator to a metal as the temperature falls below \sim160 K. The change in conductivity of \sim10000 is 100 times larger than that seen previously in any single-phase manganite in zero field. The metallic low-temperature state is similar to that found at x=0.58, but x=0.58 shows no evidence of orbital/charge order. This result, and further analysis, supports a conclusion that strongly coupled magnetic/conductive transitions are universally of first order.

¹This research was supported by the U.S. Department of Energy, Office of Science, under Contract No. W-31-109-Eng-38.