Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Magnetism of Rubidium Cobalt Hexacyanoferrate Nanoparticles. D.M. PAJEROWSKI, M.W. MEISEL, Department of Physics, University of Florida, F.A. FRYE, D.R. TALHAM, Department of Chemistry, University of Florida — Although photoinduced magnetism in nanoparticles of Prussian blue analogs has been reported, these samples are superparamagnetic. We have generated and characterized nanoparticles of Rb$_2$Co$_6$[Fe(CN)$_6$]$_n$·nH$_2$O, which exhibit photoinduced magnetism and, for the largest particles, long-range ferrimagnetism with finite coercive fields. The synthesis involves the variation of the concentration of the poly(vinylpyrrolidone), PVP, the encapsulating polymer, which controls the resulting particle sizes. From HR-TEM, the particle size distributions have been obtained for four batches of samples, with mean diameters ranging from nominally 3 nm to 13 nm. Upon irradiation with white light at 5 K, all samples exhibit photoinduced magnetism. Magnetization studies indicate that the smallest particles are superparamagnetic, while the largest ones are ferrimagnetic with long-range ordering temperatures ($T_c \sim 17$ K) and coercive fields ($H_c \sim 250$ G) varying with particle size in a manner consistent with the predictions of finite-size scaling.

1Supported by NSF DMR-0305371 (MWM) and DMR-0543362 (DRT).

D. M. Pajerowski
Department of Physics, University of Florida

Date submitted: 15 Nov 2006

Electronic form version 1.4