Antiferromagnetism
and geometrical frustration in one-dimensional Ca$_5$Ir$_3$O$_{12}$ and Ca$_4$IrO$_6$

single crystals1 ANGELA DOUGLASS, VINOBALAN DURAIRAJ, SHALINEE CHIKARA, GANG CAO, Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506, SEAN PARKIN, Department of Chemistry, University of Kentucky, Lexington, KY40506, PEDRO SCHLOTTMANN, Department of Physics, Florida State University, Tallahassee, FL32306 — We report a structural, thermodynamic and transport study of the newly synthesized single crystal Ca$_5$Ir$_3$O$_{12}$ and Ca$_4$IrO$_6$. Both materials consist of a triangular lattice of spin chains running along the c-axis. Ca$_5$Ir$_3$O$_{12}$ and Ca$_4$IrO$_6$ are antiferromagnetically ordered below 7.8 K and 12 K, respectively. The study reveals an unusually large ratio of the Curie-Weiss temperature to the Neel temperature (>36 for Ca$_5$Ir$_3$O$_{12}$) and a small entropy removal associated with the magnetic phase transition. In addition, the magnetic susceptibility and heat capacity show that the phase transition is essentially insensitive to the application of the magnetic field. All results suggest the presence of the geometrical frustration that causes incomplete long-range antiferromagnetic order. The results will be presented and discussed along with comparisons drawn with other related systems.

1This work was supported by NSF grants DMR-0240813, DMR-0552267 and DOE grant DE-FG02-98ER45707.