Optical Properties and Magnetic Field-Induced Phase Transitions in the Ferroelectric State of \(\text{Ni}_3\text{V}_2\text{O}_8 \)\(^1\) R.C. RAI, J. CAO, S. BROWN, J.L. MUSFELDT, University of Tennessee, D. KASHINATHAN, UC Davis, D.J. SINGH, ORNL, G. LAWES, Wayne State University, N. ROGADO, DuPont, R.J. CAVA, Princeton University, X. WEI, NHMFL — We present a combination of optical spectra, first principles calculations, and magneto-optical measurements to elucidate the electronic structure and to study the phase diagram of \(\text{Ni}_3\text{V}_2\text{O}_8 \). We find a remarkable interplay of magnetic field and optical properties that reveals additional high magnetic field phases and an unexpected electronic structure which we associate with the strong magneto-dielectric couplings in this material over a wide energy range. Specifically, we observed several prominent magneto-dielectric effects that derive from changes in crystal field environment around Ni spine and cross-tie centers. This effect is consistent with a field-induced modification of local structure. We find \(\text{Ni}_3\text{V}_2\text{O}_8 \) to be an intermediate gap, local moment band insulator. This electronic structure is particularly favorable for magneto-dielectric couplings, because the material is not subject to the spin charge separation characteristic of strongly correlated large gap Mott insulators, while at the same time remaining a magnetic insulator independent of the particular spin order and temperature.

\(^1\)This work is supported by the U.S. Department of Energy.

Ram Rai

Date submitted: 22 Nov 2006

Electronic form version 1.4