Exotic quantum magnetization process observed in the \{\text{Cu}_3\} triangular spin ring

K.-Y. CHOI, Department of Chemistry and Biochemistry, FSU, Tallahassee, FL 32306, USA, A. P. REYES, P. L. KUHNS, NHMFL/FSU, Tallahassee, FL 32306-4390, USA, N. S. DALAL, Department of Chemistry and Biochemistry, FSU, Tallahassee, FL 32306, USA, Y. H. MATSUDA, H. NOJIRI, IMR, Tohoku University, Katahira 2-1-1, Sendai, Japan, F. HUSSAIN, U. KORTZ, School of Engineering and Science, IUB, Bremen, Germany — We present a comprehensive set of pulsed field magnetization, ESR, and NMR measurements on the triangle spin ring system \([\text{Cu}_3(\text{H}_2\text{O})_3(\alpha-\text{XW}_9\text{O}_{33})_2]^{12-}(X=\text{As, Sb})\). We observed half step magnetization and hysteresis loops for \(X=\text{As}\) in a fast sweeping magnetic field of \(\sim10^4\text{T/s}\) at 0.4 K. These features become less pronounced for \(X=\text{Sb}\). A comparative ESR study of both compounds reveals that Dzyaloshinskii-Moriya (DM) interactions are weaker in \(X=\text{Sb}\) than \(X=\text{As}\) because of the size difference between the diamagnetic heteroatom \(X\). This leads to a reduction of an anti-level crossing gap in \(X=\text{Sb}\) compared to \(X=\text{As}\). This is consistent with the NMR results which show an appreciable peak of the spin-lattice relaxation rate \(1/T_1\) at anti-level crossing fields of 2 and 4.4 T only for \(X=\text{Sb}\). Our work suggests that the dependence of half step magnetization on \(X\) in a nanocluster system arises from a delicate balance between the adiabatic magnetization and the relaxation rate, relying on DM interactions.

Kwang Yong Choi
Department of Chemistry and Biochemistry and NHMFL, FSU, Tallahassee, FL 32306, USA

Date submitted: 29 Nov 2006 Electronic form version 1.4