Superconductivity in (TMTSF)$_2$ClO$_4$ probed by 77Se NMR J. SHINAGAWA, UCLA, Y. KUROSAKI, University of Tokyo, S. E. BROWN, UCLA, D. JEROME, Universite de Paris, Sud, J. B. CHRISTENSEN, K. BECHGAARD, Orsted Institute, Copenhagen — Superconductivity in the Bechgaard salts (TMTSF)$_2$X, with X=PF$_6$, ClO$_4$, survives well beyond the paramagnetic limit set by the transition temperature $T_c \approx 1$K. As a result, it has been hypothesized that the spin pairing is triplet. We report on measurements of the 77Se Knight shift and spin-lattice relaxation rate T_{1}^{-1}, conducted in situ with interlayer resistivity, deep within the superconducting state of (TMTSF)$_2$ClO$_4$. At fields $H_0 \approx 10$kOe aligned along the a– and b’–axes, the Knight shift reveals a decrease in spin susceptibility χ_s that is likely consistent with singlet pairing. The field dependence of T_{1}^{-1} at temperatures $T \ll T_c$ exhibits a very sharply-defined increase at a field $H_s \approx 15$kOe. For $H_0 > H_s$, T_{1}^{-1} is close to the normal state value, even though $H_{c2} \gg H_s$ and $R_{zz} = 0$ to within experimental uncertainty. We discuss the implications for interpreting the results as evidence for a crossover, or a phase transition within the superconducting state.