Adiabatic Evolution of a System of Four Coupled Flux Qubits

RICHARD HARRIS, ANDREW BERKLEY, MARK JOHNSON, PAUL BUNYK, SERGEI GOVORKOV, SERGEY UCHAIKIN, MURRAY THOM, BROCK WILSON, JASPAAUL CHUNG, JAKE BIAMONTE, MOHAMMED AMIN, D-Wave Systems, Inc. — We report upon experimental results from a system consisting of four flux qubits linked via in-situ sign and magnitude tunable coupling elements. The device was operated as an adiabatic quantum computer to solve NP-complete problems whose solutions are encoded in the groundstate configuration of the qubits. Each qubit was coupled to its own dedicated dc-SQUID in order to measure the state of each qubit, thus allowing for unambiguous identification of the groundstate of the coupled qubit system at the end of a computation. Results will be compared to a quantum model of the system’s evolution.

Richard Harris
D-Wave Systems, Inc.

Date submitted: 20 Nov 2006