Statics and dynamics of elastic manifolds in media with long-range correlated disorder \(^1\) ANDREI FEDORENKO, PIERRE LE DOUSSAL, KAY WIESE, CNRS - LPT ENS, 24 rue Lhomond, 75231 Paris, France — We study the statics and dynamics of an elastic manifold in a disordered medium with quenched defects correlated as \(\sim r^{-a}\) for large separation \(r\). We derive the functional renormalization group equations to one-loop order, which allow us to describe the universal properties of the system in equilibrium and at the depinning transition. Using a double \(\varepsilon = 4 - d\) and \(\delta = 4 - a\) expansion, we compute the fixed points characterizing different universality classes and analyze their regions of stability. The long-range disorder-correlator remains analytic but generates short-range disorder whose correlator exhibits the usual cusp. The critical exponents and universal amplitudes are computed to first order in \(\varepsilon\) and \(\delta\) at the fixed points. At depinning, a velocity-versus-force exponent \(\beta\) larger than unity can occur. We discuss possible realizations using extended defects.

\(^1\)AAF acknowledges support from the European Commission under contract No. MIF1-CT-2005-021897.